A Formula for the Chern Classes of Symplectic Blow-ups

نویسنده

  • HANSJÖRG GEIGES
چکیده

It is shown that the formula for the Chern classes (in the Chow ring) of blow-ups of algebraic varieties, due to Porteous and Lascu-Scott, also holds (in the cohomology ring) for blow-ups of symplectic and complex manifolds. This was used by the second-named author in her solution of the geography problem for 8-dimensional symplectic manifolds. The proof equally applies to real blow-ups of arbitrary manifolds and yields the corresponding blow-up formula for the Stiefel-Whitney classes. In the course of the argument the topological analogue of Grothendieck’s formule clef in intersection theory is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern Classes of Blow-ups

We extend the classical formula of Porteous for blowing-up Chern classes to the case of blow-ups of possibly singular varieties along regularly embedded centers. The proof of this generalization is perhaps conceptually simpler than the standard argument for the nonsingular case, involving Riemann-Roch without denominators. The new approach relies on the explicit computation of an ideal, and a m...

متن کامل

Gromov-Witten Invariants of Blow-ups Along Points and Curves

In this paper, usng the gluing formula of Gromov-Witten invariants under symplectic cutting, due to Li and Ruan, we studied the Gromov-Witten invariants of blow-ups at a smooth point or along a smooth curve. We established some relations between Gromov-Witten invariants of M and its blow-ups at a smooth point or along a smooth curve.

متن کامل

Semifree Symplectic Circle Actions on 4-orbifolds

A theorem of Tolman and Weitsman states that all symplectic semifree circle actions with isolated fixed points on compact symplectic manifolds must be Hamiltonian and have the same equivariant cohomology and Chern classes of (CP 1)n equipped with the standard diagonal circle action. In this paper, we show that the situation is much different when we consider compact symplectic orbifolds. Focusi...

متن کامل

Topology of Blow–ups and Enumerative Geometry

Let f M be the blow–up of a complex manifold M along a submanifold X. We determine the integral cohomology ring and obtain a formula for the Chern classes of f M . As applications we determine the cohomology rings for the varieties of complete conics and complete quadrices in 3–space, and justify two enumerative results due to Schubert [S1, §20; §22]. 2000 Mathematical Subject Classification: 1...

متن کامل

Chern Classes for Singular Hypersurfaces

We prove a simple formula for MacPherson’s Chern class of hypersurfaces in nonsingular varieties. The result highlights the relation between MacPherson’s class and other definitions of homology Chern classes of singular varieties, such as Mather’s Chern class and the class introduced by W. Fulton in [Fulton], 4.2.6. §0. Introduction 2 §1. Statements of the result 4 §1.1. MacPherson’s Chern clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006